

Capstone Project Report

MineTicket Project

Kennesaw State University

IT 4983-01/W02 Capstone Spring 2024

Web Link: https://mineticket.weebly.com/

Group 2

Palmer Brown

Arturo Martinez

DJ Rice

Grace Shell

Solomon Thao

Last Updated on 4/21/2024

https://mineticket.weebly.com/

 2

Executive Summary

Introduction

This document seeks to inform our stakeholders (and related associates) of details pertaining to

the MineTicket project, as well as the intricacies of the project’s implementation and design. We

would like to express our thanks to the KSU eSports club management as well as our capstone

professors and coordinators for their participation and effort towards seeing to the completion of

this project. Our group (which will henceforth be referred to as “Group 2”) is confident in its

ability to design and implement a system that will suit the needs of the KSU eSports club and

community.

Stakeholder Needs

To Group 2's understanding, the needs of the main stakeholders (KSU eSports) are as follows:

• System Development

o The development of a system that links a Discord ticketing bot to the KSU

eSports Minecraft server, ideally through a database containing ticket information

• Convenience and Longevity

o The aforementioned system must be designed in such a way as to promote

efficiency and convenience for KSU eSports moderation staff.

▪ Specifically on the side of Minecraft, there is a preference from the

stakeholders to integrate the system with the in-game chat.

o The aforementioned system must be designed in such a way as to prolong its

supported lifespan after the project’s completion. Versatility across multiple

versions of Minecraft and Discord is therefore preferred.

Stakeholder Outcomes

Group 2 understands that the project’s stakeholders wish for the final product to result in a

more efficient way for their staff to handle tickets from the KSU eSports community, which will

assist in quicker response times to user issues, and a better overall experience for both users and

moderation staff. A system that is user-friendly from all angles (in terms of moderation staff,

server users, administration staff, etc.) is desired.

Table of Contents

 3

2 Executive Summary

3 Table of Contents

4 Background

7 Project Outcomes

12 Project Planning

20 Team Reflection

26 Appendix

30 Bibliography

Background

 4

The KSU eSports management team runs into the same issue that any organizational

moderation team is liable to encountering: the issue of maintaining a long-standing and low-

maintenance system in which complaints, issues, and concerns can be efficiently communicated

and acted upon by an appropriate member of staff. In the particular case of KSU eSports, the

environment of a Minecraft server (especially one that is open to the public according to KSU

eSports moderator Derek Comella, also known by his username “qartho”) is prone to many

different issues that may need immediate attention from moderation staff. Such incidents include

hacking, “griefing”, bug exploitation, and violations of community rules set by the KSU eSports

management team.

Group 2 seeks to resolve these issues by offering solutions that will align with the needs

of the stakeholder. As previously mentioned in the project introduction, Group 2 seeks to create

solutions that are user-friendly, intended for long-term use, and low-maintenance in terms of

upkeep.

Project Scope

 5

Goals

• Create a Discord bot with the following
functionalities:

o Chat-based interaction
o Text channel creation
o Button interaction

• Create ticket database functionality within a
Minecraft environment

• Create a database as a “middleman” system in
which data is transferred from Minecraft to
Discord through the database

• Implement ticket functionality across the
Discord/Minecraft applications

Deliverables

• Discord bot

• Ticketing database

• Demonstration of implemented features (e.g.
cross-application functionality)

Resource Constraints

• Because this is a project with no funding,
Group 2 is severely limited in terms of
monetary cost

• Because Group 2’s members are all students,
there may also be issues regarding time cost
depending on the student

• Regardless, because this project is part of a
capstone project and is not particularly cost-
intensive, the lack of resources should not be a
major issue

• Graciously, Group 2 has also received
multiple offers for KSU eSports resources to
use during the testing and implementation
phases of the MineTicket project

Technical Background

For the MineTicket project, an understanding of Minecraft, Discord, Python, and MariaDB

is needed to grasp the basic intricacies of how the project is currently intended to work. A list of

helpful concepts to understand is as follows:

 6

• Minecraft

o Different Minecraft versions and editions

o Minecraft chat command functionality

o A general understanding of Minecraft multiplayer communities

o Minecraft API

• Discord

o Bot chat command functionality

o A general understanding of Discord’s user-facing structure, specifically within

text channels and chat command functionality

o Discord code methodology

o Discord API

• MariaDB

o Navigation of SQL environments

▪ SQL language

o Functionality with Python

▪ Pulling data from a database

▪ Connecting a database to a Python environment

• Python

o Group 2 mainly utilized Visual Studio Code to create the MineTicket bot using

Python

Further information and cited research on these topics can be found in the “Technical Summary”

sub-section of the “Project Outcomes” section.

Project Outcomes

Assessment of Project Outcomes

Overall, the project was a major success. The following is a list of goals and deliverables,

along with general commentary on each. Commentary will be italicized and bolded.

 7

• Goals

• Create a Discord bot with the following functionalities:

o Chat-based interaction

o Text channel creation

o Button interaction

▪ All mentioned functionalities were implemented by the project’s due

date.

• Create ticket database functionality within a Minecraft environment

o MariaDB connection with the Python code allows for easy navigation of a

database structure. The database itself is set up to obtain data from a

Minecraft environment.

• Create a database as a “middleman” system in which data is transferred from

Minecraft to Discord through the database

o MariaDB functionality with Python allows for the database to communicate

with both Discord and Minecraft simultaneously.

• Implement ticket functionality across the Discord/Minecraft applications

o Ticket functionality implemented by the project’s due date.

• Deliverables

o Discord bot

▪ Complete, planned to be delivered by due date

o Ticketing database

▪ Complete with instructions on MariaDB setup and connection

o Demonstration of implemented features (e.g. cross-application functionality)

▪ Features were regularly displayed at sponsor/milestone meetings as well

as upon request from the project sponsor.

Technical Summary – Milestone 1

Much of Milestone 1’s work has been dedicated to connecting a MariaDB database to the

MineTicket Discord bot which runs on Python, as well as implementing the base functionality of

the bot. The consultation of several resources on the MariaDB site was crucial to understanding

the process of proper implementation. For MariaDB Community Server version 10.6, database

 8

configuration and testing were handled by issuing commands through the terminal (1).

Connecting the database to the developed Python-based Discord bot required the MariaDB-

Python Connector software, allowing Group 2 to “use and administer databases from within [the]

Python application” (2). The combination of the MariaDB server and the Python connector

software allowed the connection between the Discord bot and the database to function properly.

Tests were completed in Group 2’s own test Discord server which showed that the bot could

successfully pull and display data from an established database.

One problem tackled during this Milestone was that of SQL injection. Since the

MineTicket bot is meant to take in user input to be used in a SQL query, the bot runs the risk of a

malicious input which can execute unintended queries. To briefly explain SQL injections, a

malicious user can input either an escape sequence of characters, such as a quote or a well-placed

backslash, and then input a query they wish to execute on the server, such as SELECT * FROM

passwords, or DROP DATABASE database. For the project's use case, the likelihood of these

attacks is very slim, but still a potential threat. As such, Group 2 created an SQL sanitization

module, which handles construction and execution of SQL queries in a manner that eliminates

the risk of these attacks being a possibility.

In order for the Python-based bot itself to function properly within Discord, Group 2

required the usage of discord.py, “a library for Python to aid in creating applications that [utilize]

the Discord API” (3), thereby allowing for connectivity between the bot and Discord. Especially

important to bot commands and basic in-app functionality was the concept of “intents”, which

“allows a bot to subscribe to specific buckets of events” (4). In other words, Discord intents are a

form of coded-in permissions for a bot to use, which is primarily helpful in ensuring a more

securely coded bot that does not have unnecessary permissions or abilities (which would be

particularly harmful in the case of a bot security breach).

Other concepts within the space of Python have also instrumental in ensuring Group 2’s

code remains readable and efficient, which reinforces KSU eSports’s desire for low-maintenance

structures that are easily understandable which can be picked up by others if needed in the future.

For example, discord.py’s cog organization allows for “[organizing] a collection of commands,

listeners, and some state into one class” (5), which assists in breaking down command lists to

more readable portions. Additional efficiency-related concepts in Python include the return value

annotation and “args/kwargs”. Return value annotation is “a way to document [the] code

elegantly in-line, by allowing [Group 2 and other administrative users] to simply describe the

data type of the ‘thing’ the function returns” (6, 2020), which makes returned function data

readable and understandable to others. Args (non-keyword arguments) and kwargs (keyword

 9

arguments), which allow the passing of variable-length groups of arguments into Python

functions, increase flexibility within the code (7, 2023).

Technical Summary – Milestone 2

The main goal of Milestone 2 was to have the MineTicket bot functionality implemented at

least at a base level. Group 2 desired to have a demonstrable prototype of the MineTicket bot that

could be shown at the meeting for Milestone 2 with KSU eSports.

One of the main tenets of bot functionality was the usage of commands from within the

Discord environment for users to interact with the bot. Ensuring that command implementation

was done seamlessly, efficiently, and effectively were paramount to proper function of the bot.

There are numerous examples of how discord.py documentation was used, but one of the main

usages of the documentation was to properly implement hybrid commands, which is a method of

invoking a command “... as both a text and a slash command. This allows [programmers] to

define a command as both slash and text command without writing separate code for both

counterparts” (9). Having the ability to simplify the project code helps readability from both a

developer end and from the end of future developers that may attempt to edit the code to fit

future standards. Synchronization of the command list was found to be best handled through its

own dedicated “sync” command (10) which can be used at any point when needed within the

Discord environment.

In relation to the MineTicket bot’s command functionality, both Group 2 and KSU eSports

agreed that button functionality was paramount to the accessibility of the bot to be used by

developers, administrative staff, and regular server users without any special permissions. To

properly implement buttons, Group 2 required discord.py’s button UI documentation (11) and

the development of the command list. Through these developments, proper button functionality

is showing significant progress, but still may need some testing before fully operational at an

acceptable level.

Another focus of the Milestone 2 period was the focus on getting data to and from a SQL

database through the usage of the cursor class within MariaDB’s import selection. The SQL-side

of the MineTicket project was able to be navigated properly by the bot through the method of

creating a connection between Python and the database, having the cursor work as intended

depending on the functionality needed (ex. inserting or pulling data), and then closing the

connection once completed before returning any required data, if applicable. Helpful cursor

methods included “cursor.commit” which allowed Python to push changes towards the database,

and “cursor.close” which closes the cursor until needed again. The “cursor.execute” method in

 10

particular was helpful to database functionality due to its ability to allow for the preparation and

execution of SQL statements (12).

Furthermore, there were significant technical difficulties regarding Wix hosting the

MineTicket project site due to significant downtime and issues found when attempting to access

the Wix site. However, a quick fix was found by instead having a different site hosted by

Weebly, which has proven to be more stable and accessible.

Technical Summary – Milestone 3

 Milestone 3 presented the issue of button persistence, as currently any buttons sent by the

bot would cease to function should the bot be restarted, or if connection to the server was lost.

With this problem solved, the MineTicket bot would be considered a finished project in Group

2’s eyes, and ready for sponsor use in the field.

 With each message sent in Discord, there are certain properties which remain hidden

from the user. One of these properties is a message's “view”. This view is a way for these

messages to present UI elements to users, such as buttons in this case (11). The problem is that,

when the MineTicket bot is restarted either due to a necessary hardware reboot, software update,

or internet outage, the bot effectively “loses track” of these views and is unsure of what to do

with interactions received from them. The solution to this problem is a functionality known as

persistence.

 Persistence allows these views to be re-accessed following a reboot, meaning that

interactions sent from them are not lost upon reset. However, a problem with persistent views is

that each instance of a view must be made persistent individually, and this is performed when the

bot initially boots up. With the MineTicket bot’s implementation, this would not work. Each

button contains a custom ID where the associated staff ticket ID is stored, meaning each button is

unique to each message. If the bot were to make buttons persistent on a boot instance, it would

either take an increasingly long time for the bot to reboot, or it would completely disregard

inputs from certain buttons. Thus, the introduction of dynamic item classes was needed to further

ensure product stability.

 Dynamic items appear to be the same as regular Discord UI items, such as buttons.

However, there are several key differences that make them extremely useful. First, class

declaration of a dynamic item can be declared persistent, meaning that any dynamic item of that

class created by the bot is automatically persistent, allowing the bot to not only properly receive

interactions post reboot, but retain the information stored within the custom ID. The second key

difference is that dynamic items have special functionality for pulling information from the

custom ID via regex match. This makes it extremely easy to create the button when needed, store

information in the custom ID, and then use that information to perform different actions or pass

 11

along to helper functions. This, combined with the ability to overwrite the callback function of

the dynamic item (much like with a regular button) allows dynamic items to be incredibly

powerful, and they were exactly the solution needed for the MineTicket bot.

Dynamic Buttons Class from bot_manager.py

 Besides the dynamic items changes and persistence updates, the MineTicket bot also

received the ability to parse JSON strings sent within a specific channel. By using Discord as an

intermediary and properly restricting the “feed” channel’s permissions to prevent improper

messages, the ability to parse these JSON strings gives the bot the ability to be connected to

almost any other program running anywhere else in the world, provided that the bot has the

permissions to send messages within this channel.

 Each JSON string contains a variety of information about what the bot needs to do,

centered around the “event” variable of the JSON string. The three primary events are “create”,

“claim”, and “close”. Just like the buttons and commands within Discord, any JSON string sent

using one of these three commands can interact with the database and create/update existing

tickets, while also keeping staff members in the loop and not requiring any special interactions.

Tickets appear in the same channel they normally would, staff members are still able to claim

tickets from within discord even if they originate from a different source, and tickets created

within Discord can also be managed from other sources, such as a Minecraft server staff

member. This flexibility was crucial to the sponsor, and so implementing it properly within

MineTicket was a top priority.

Project Planning

The MineTicket project would not be in the position it is now without the management

practices we implemented in order to reach our desired milestone progression. This section will

provide certain insights into how we progressed under our management methods.

 12

Overview

As of Milestone 1, Group 2 operates at a functionally acceptable capacity. Weekly

meetings and discussions within Microsoft Teams keep each member updated on progress and

accountable for their portions of the required work.

The seventh volume of A Guide to the Project Management Body of Knowledge contains

the Tuckman Ladder, a development model regarding the stages of team development (8, 2021).

The five stages of the Tuckman Ladder are: forming (initially coming together), storming

(internally competing and identifying with roles and positions within the team), norming

(beginning to function as a team with understood roles), performing (operating efficiently and

synergistically), and adjourning (completing the project and possibly dispersing to work on

others). While there is no rubric for Group 2 to be graded on in terms of where it aligns itself on

this ladder, it’s safe to say that Group 2 is beginning to function as a team that understands the

roles of each team member. Therefore, while improvements need to be made regarding

performance in a synergistic and highly efficient manner, Group 2 is currently in the “norming”

stage and are likely trending towards the next.

As of Milestone 2, Group 2 has improved on their previous challenges to optimal

efficiency. As predicted in the first draft of this document, Group 2 has entered the “performing”

stage, where each member has a better idea of their role in the group’s progress and

communication between different branches of work is openly communicated. Synergy between

group members, whether collaboratively or individually, has reached an all-time high within the

project's timeline.

Milestone 3 solidified the working order and task assignments of all team members. By

this point, Group 2 transitioned from the “performing” stage and is now in the “adjourning”

stage. Each member has found comfortable individual positions within the dynamics of the

group, and are ready to continue post-project processes and full adjournment. Group members

have expressed positivity and fulfillment at the completion of the project and may collaborate in

the future.

Process

Milestone 1’s most important aspects were the implementation of the basic Discord bot

functionality and the MariaDB database. Group 2 managed to achieve this through separating

task responsibilities by familiarity—some members were better versed in Python and Discord,

while others were more used to database structures. Since this was the first major milestone for

this project, the greatest challenge was understanding how Group 2 worked as a team and what

each member’s strengths and weaknesses were.

 13

• Goals reached:

o Basic Discord bot functionality

▪ Bot setup, basic responses to inputs, etc.

o MariaDB database implementation

o Group task delegation standards

Milestone 2’s most important aspects were the functionality of the bot within the Discord

environment, mainly consisting of code that implemented commands and button functionality, as

well as project website creation and combining the Discord bot functionality with the project’s

SQL database, along with the actual navigation of said database through the use of various

commands and JSON methods. As with Milestone 1, each group member’s familiarity with

certain aspects of the deliverables was considered when assigning work.

• Goals reached:

o Implementing button functionality

▪ Basic button interactions and testing

o JSON configuration for database interaction

Milestone 3’s most important aspects concerned button persistence and developing both

JSON parsing methods and the documentation of the project through the GitHub Wiki and the

project site. Persistence, as stated before, proved to be a significant roadblock to project

completion and required significant attention from all group members. Regardless, the

persistence issue was solved and the finalization of the project came shortly afterwards.

• Goals reached

o Button refinement and finalization

▪ Persistence update

o JSON updates

 14

▪ Backend finalization

▪ Flexibility

o Code cleanup

▪ Removal of debug commands meant for development use

o Documentation

▪ GitHub Wiki

▪ Final website update

Team Contribution Summary

Milestone 1

Palmer Brown
Arturo

Martinez
DJ Rice Grace Shell Solomon Thao

Codebase guidance

Code
implementation for
MariaDB to Python

data transfer

Implementation of
various Discord bot

chat functions

Creation of Discord
test bot*

MariaDB research
and implementation

SQL injection
sanitization

Implementation of
various Discord bot

chat functions

Creation of Discord
test bot*

MariaDB to Python
connectivity

research

Creation of Discord
test bot*

 15

Creation of Discord
test bot*

Bot functionality
with MariaDB

*= Denotes creation of a personal Discord test bot for the member, each of which was referenced and used to create a final MineTicket test bot

Milestone 2

Palmer Brown
Arturo

Martinez
DJ Rice Grace Shell Solomon Thao

Interactive button
testing and

implementation

Integration of SQL
commands to

commands

Tested out various
UI designs for ticket

forms

Implemented bot
commands and
connected to

MariaDB

Create, Claim,
Close commands

drafted and worked
on

Drafted future

possible commands

Continued MariaDB
Schema testing

Reworked bot

interaction
framework

Create, Claim,

Close command
work

Testing UI display

for players

Implemented help
command

Website editing

Interactive button
testing and

implementation

Various note-taking
and short-term
planning duties

Research paper

drafting

Milestone 3

Palmer Brown
Arturo

Martinez
DJ Rice Grace Shell Solomon Thao

JSON Parsing
backend

functionality

Robust button
backend based on

button context

ReadTheDocs
testing, eventual
swap to GitHub

Wiki instead

Filling out
documentation for
overall codebase

JSON Research

JSON Parsing
backend functions

Attempting to solve
Persistence issues

with team members

Code review and
cleanup

Finalized MariaDB
schema

Implemented button

persistence

Created streamlined
setup process

Re-implemented UI

display for ticket
creation

ReadTheDocs
attempt

The GitHub Wiki

Website editing

Button testing/code
functionality

Research paper

drafting

Various note-taking
and short-term
planning duties

Code cleanup and

embed
implementation

across code

Persistence research

 16

and bot
functionality

Code cleanup and
refactoring across
entire codebase

Workload Summary

Milestone 1

Palmer Brown
Arturo

Martinez
DJ Rice Grace Shell Solomon Thao

GitHub guidance:
5hrs

General testing and

project codebase
config: 10hrs

Assisting with

MariaDB to Python
integration: 10hrs

Researching
options and

existing
implementations:

10hrs

Researching
existing bots and

best practices:
10hrs

Debugging,

implementing chat
commands and

researching API:
20hrs

Misc. code audits:

2hrs

Database
Research/Implementation:

10hrs

SQL injection
sanitization: 20hrs

Bot functionality with

MariaDB: 10hrs

Misc. code audits: 3hrs

Researching
GitHub capabilities
and comparing IDE
implementations:

4hrs

Working with API
to create chat
commands,
debugging:

20hrs

Testing existing
code, researching
existing options:

8hrs

Formatting
meeting notes and

miscellaneous
research:

12hrs

Researching/
Implementing
MariaDB API:

6hrs

Researching
Python and
discord.py

methodology:
6hrs

Debugging,

testing bot, code
fuzzing:

 17

10hrs

Milestone 2

Palmer Brown
Arturo

Martinez
DJ Rice Grace Shell Solomon Thao

Button testing and
implementation:

14hrs

Discord.py
research and

personal testing
(test bots):

12hrs

MariaDB to python
integration

(commands and
buttons): 4hrs

Code audit and

debugging misc.:
4hrs

Finalizing key
commands: 14hrs

Connecting to

MariaDB:
8hrs

Debugging

commands and
testing: 7hrs

Drafting

commands: 4hrs

MariaDB Schema
Testing: 15hrs

Bot interaction

framework: 10hrs

UI Display testing: 8hrs

Create, Claim, Close
Commands: 10hrs

Misc. Code Audits: 6hrs

Discord help
command: 12hrs

Website editing:

4hrs

Connecting to
MariaDB: 4hrs

Milestone 2

prep/presentation:
4hrs

Note-taking and
planning: 10hrs

Research paper
drafting: 5hrs

Button testing and
implementation:

10hrs

Misc. technical
research: 5hrs

Milestone 2

presentation and
planning: 4hrs

 18

Milestone 3

Palmer Brown
Arturo

Martinez
DJ Rice Grace Shell

Solomon
Thao

Json parsing
backend and robust

functionality:
10hrs

Functionality

updates to buttons
based on message

context:
6hrs

Persistence
attempts:

4hrs

ReadTheDocs
work:
10hrs

Github Wiki

documentation:
8hrs

Codebase

refactoring and
cleanup:

2hrs

JSON Parsing:
15hrs

Code Review:

6hrs

Persistence
Attempts:

9hrs

Final code
cleanup:

3hrs

General github
management: 8hrs

Persistence/Dynamic

Items: 30hrs

Database interface
changes/management: 4hrs

Code Audits: 15hrs

API Research: 8hrs

Setup

simplification/walkthrough:
2hrs

ReadTheDocs
attempt: 7hrs

The GitHub Wiki:

9hrs

Website editing:
2hrs

Button code
refinement and
updates: 14hrs

Note-taking and
planning: 5hrs

Misc. technical
research: 5hrs

Research paper
drafting: 8hrs

Bot testing: 4hrs

General code

updates (JSON
and embeds):

3hrs

 19

Team Reflection

Success Factors

So far, Group 2 has been commended by stakeholders for exceeding expectations,

maintaining professionalism, and having in-depth analyses and comparisons of the technologies

and methods at the group’s disposal. Having a significant emphasis on methodological

comparison allowed for two critical benefits: For one, comparison in service of finding the best

fit for the team and the project shows stakeholders that their concerns are taken seriously.

Secondly, this allowed Group 2 to consider strengths and weaknesses as a group, creating a

better understanding of the project structure.

Further commendations for Milestone 2 include how the current iteration of the

MineTicket bot exceeds the current expectations from KSU eSports. Modal implementation

within the bot also proved to be a sign of proper progress and adherence to the guidelines and

deliverables listed by KSU eSports.

Milestone 3’s stakeholder review showed strong support from KSU eSports, the course

instructor, and the project coordinator. Based on the presentation of our fully functional bot,

KSU eSports representative Kylie Nowokunski described the project as “exactly what was asked

for”, especially giving notice to Group 2’s strict adherence to all project guidelines as well as

going above and beyond to implement extra features that were optional but not necessary. Group

2 focused on strict adherence to the guidelines from the project's beginning, ensuring that every

week was spent focusing on critical project infrastructure development.

 20

Team Collaboration and Communication (Milestone 1)

 General Collaboration

Meeting
Arrangements/

Experiences

Collaboration
Systems and

Tools

Other
Experiences

Palmer
Brown

Team is very responsive and
helpful. Worked with Solomon to
create a foundation for
integrating MariaDB into the
code.

Meetings were
productive. Screen
sharing is used to
great extent and
usefulness.

MS Teams: Group-
based communication
app for meetings and
general project
discussion

Discord: Collaboration
and communication
with stakeholders

I have already learned
a fair bit about basic
database functionality
within python from
this project. Sharing
these findings with the
team is a great
bonding experience!

Arturo
Martinez

Group 2 is very determined to
develop a sustainable project.
Group 2 fosters a positive
environment to work and develop
such a project.

Every meeting that we
typically have
includes details that
must be addressed and
helps keep everyone
up to date. Every
meeting minute is
useful in some way or
form.

Building the Discord
bot has proven to be
an enlightening
experience for all
group members.

DJ Rice

Team was very responsive when
it was needed. Communication
was clear and everyone respected
the escalation path set forward at
the beginning.

Finding times that
worked for everyone
was challenging
initially, however we
did end up working a
schedule out that
worked for everyone.

Managing the GitHub
is a fairly involved
process, particularly
with so many different
branches flying
around.

Grace
Shell

The team is always responsive. Arturo and I had
branched off to take
on commands for the
Discord. I specifically
took on the help
command.

Trying to understand
everything about
Discord commands
can be a little
confusing.

Solomon
Thao

Group was separated into smaller
teams which tackled specific
problems. Personally focused on
Python-MariaDB connectivity
research and logging non-project
details (meeting minutes, notes,
etc.)

Meetings were
productive and well-
structured, all
scheduled through MS
Teams

Planning outside of
the project (e.g.
capstone-specific
assignments) can be
hectic

 21

Team Collaboration and Communication (Milestone 2)

General

Collaboration
Meeting

Arrangements/Experiences

Collaboration
Systems and

Tools
Other Experiences

Palmer

Brown

Group 2 has continued to

display favorable

collaboration techniques.

Communication is clear,

meetings are held on

time and kept to a

needed duration. Group

member flexibility has

proven helpful.

Despite busy schedules, Group 2
has managed to arrange meetings
consistently thanks to the effort of
all members, especially Grace.
These meetings have been
productive and have assisted Group
2 in making significant progress.

MS Teams:
Group-based
communication
app for meetings
and general
project
discussion

Discord:
Collaboration
and
communication
with stakeholders

GitHub:
Collaborative
code-hub site in
which the project
is stored, edited,
etc.

Visual Studio
Code: IDE
supporting
Python
development
with integration
from GitHub

Each team member has
aligned to their defined roles
within the project and work
effectively within those roles.
The collaboration and
division of tasks have
allowed the group to make
steady progress. Members
frequently learn from each
other's expertise.

Arturo
Martinez

Since Milestone 1, the
level of general
collaboration has been
consistent.
Responsibility and
clarity are emphasized.
Group 2 is consistently
working towards all
predefined goals.

Despite being mostly remote, the
team is flexible enough to where
accomplishments and progress is
clearly communicated. Though
some members may be absent or
late to certain meetings, proper
note-taking and discussion allows
for all group members to
understand established guidelines
and goals.

External circumstances that
affect project time dedication
can be easily communicated
between team members. All
members are dependable
enough to compensate for
unforeseen issues.

DJ Rice

Despite a few issues,
meetings went ahead as
scheduled. Certain
meetings were notably
productive. Members
were more than willing
to find the time
necessary to collaborate
outside of meeting times
in order to meet crucial
deadlines.

Meetings were efficient and
informative. Group 2 is attentive
during the meetings, particularly
with Solomon dedicated to creating
recap notes for us all to reference
post-meeting.

With individual breakout meetings,
the team is not afraid to ask for
extra help from other team
members, even if they aren’t
present at the beginning of the
meeting or initially invited to
breakout meetings.

GitHub has become a more
familiar platform to all
members throughout this
project. Pull requests serve a
much more obvious purpose,
and working with a
collaborative team on a repo
has been a valuable
experience for all.

Grace
Shell

Despite several issues,
Group 2 took the time
and collaborated closely
to ensure that goals were
reached during
Milestone 2.

Group 2 ran into some scheduling
concerns, but still found ways to
make sure that each member can
access the information on short-
term tasks for each week.

Group 2 excels by actively
supporting one another in
areas where individual
strengths may be lacking,
thereby fostering a highly
effective and cohesive team
dynamic.

Solomon

Thao

Group 2 is working
efficiently through its
proper planning and
execution of properly
established goals.

As mentioned, meetings are
informative and have clear
guidelines on what needs to be
completed. In cases where further
discussion is needed, notes and
Teams posts are used for further
communication.

Visual Studio Code has
become a cornerstone of the
MineTicket project’s
functionality, and proper
usage of VSCode has become
routine.

Team Collaboration and Communication (Milestone 3)

General

Collaboration
Meeting

Arrangements/Experiences

Collaboration
Systems and

Tools
Other Experiences

 22

Palmer

Brown

Group 2 ran into a

plethora of issues within

Milestone 3’s timeframe,

but with flexible

scheduling and persistent

teamwork, success was

acheived. Every

teammate does their job

diligently, and everyone’s

individual expertise

proves to be beneficial to

the group.

All meetings were clear,
consistent, on time, and effective
in content covered. Group 2 met
multiple times in between
regularly scheduled meetings to
work collaboratively. All
meetings were crucial in
solidifying the project scope as
the project continued.

MS Teams:
Group-based
communication
app for meetings
and general
project
discussion

Discord:
Collaboration
and
communication
with
stakeholders

GitHub:
Collaborative
code-hub site in
which the project
is stored, edited,
etc.

Visual Studio
Code: IDE
supporting
Python
development
with integration
from GitHub

While significant work was
done in collaborative meetings,
each team member
demonstrated a drive to
accomplish the project’s goals
on their own time as well.
Group 2’s members have
become much more
comfortable with learning new
information from other
members, and has come closer
as a whole.

Arturo

Martinez

Group 2 pushed through
the hurdles found during
the completion of
Milestone 3, leading to a
complete product. All
teammates ensured to
help one another with any
individual weaknesses,
allowing for excellent
teamwork.

All the meetings at this Milestone
were always important and to the
point. Group 2 never wasted
meeting minutes unless there
were emergencies as life still
happens. All meetings ensured
team members were caught up to
speed with everything happening
that week.

Group 2’s developers truly felt
the tension this Milestone as
Persistence proved to be a
formidable problem to solve.
The team persisted through and
accomplished the
implementation of persistence.
Group 2 has truly bonded over
hardships found in the setbacks
of Milestone 3.

DJ Rice

Group 2 experienced
quite the hurdle with
Milestone 3, being bot
persistence. However,
with a ton of teamwork
and frequent meetings,
Group 2 was able to
overcome these
challenges with help from
every single member.

All meetings were very helpful to
furthering the goal of finishing
the bot, with all members making
it to almost every single meeting
we had. Any absences were
remedied using separate one on
one meetings, and the notes
created ensured nothing was
missed.

The group absolutely knocked
it out of the park with this
milestone. Tensions were high
when the group discovered
persistence was required to
ensure the bot continued
working after a reboot, but how
quickly the group came
together to solve this issue was
immensely satisfying.

Grace
Shell

Group 2 encountered
various obstacles along
the way, including
numerous conflicts, but
they remained committed
to the project. Despite
these challenges, we
managed to overcome
each barrier and delivered
a successful final
presentation.

Team meetings provided a
platform for collaboration and
problem-solving. Despite
conflicting schedules and other
work commitments, everyone
made a concerted effort to attend
and contribute to the discussions.

Group 2 faced significant
challenges with Readthedocs
due to compatibility issues,
which required a last-minute
switch to GitHub Wiki for
documentation. This abrupt
change demanded quick
adaptation and reorganization
of our content, but it ultimately
provided a more reliable
solution.

Solomon

Thao

Group 2 ran into several
major issues during the
project runtime.
However, due to Group
2’s flexible planning
structure, it was able to
bypass issues through
collaborative efforts
centered on fixing them.

All meetings have been
informative with clear weekly
goals that have been consistently
met. Notes and logged minutes
were consistently recorded for
future reference if needed by any
group member.

Meetings have become spaces
where the group feels
comfortable with each other.
The group's dynamic shifted
towards a more collaborative
and supportive environment as
the project went on, likely due
to each member growing better
understandings of the group as
a whole and as individuals.

Challenges

One of the major challenges of this project so far has been the presence of deliverables

unrelated to the project itself, specifically when it came to planning these out for Group 2 to

handle. MS Project has been immensely useful in the group’s endeavors to separate tasks and

assign members to them, but as for anything outside of this scope, it becomes easy to forget that

there are deliverables besides the project that are needed such as weekly reports.

 23

Milestone 2’s particular challenges mainly had to do with each individual group member’s

time management as the semester continues. While time management was a significant

roadblock for Group 2’s productivity, proper discussion of scheduling and collaboration allowed

for productivity to remain at acceptable levels.

Group 2 became much more organized and efficient at overcoming the non-technical

issues it faced in the first two milestones. However, by the time of Milestone 3, it was

unanimously agreed to be the most intensive portion of the project in terms of finding, reacting

to, and implementing fixes towards technical challenges. The aforementioned persistence issue

was a potentially project-killing issue if left unchecked. Thankfully, the issue was fixed after

major changes to the code structure as well as Group 2’s members working collaboratively to

find solutions to the problem of buttons lacking persistence. The issue of persistent buttons is

documented further in the “Technical Summary – Milestone 3” section.

Areas to Improve

Though no specific weaknesses were brought up by stakeholders during the Milestone 1

meeting, Group 2 has had issues in the past regarding the understanding of course material and

deliverables that are not directly related to the project itself (as mentioned in the “Challenges”

section). For example, an issue arose regarding the header of the project plan and status of the

weekly reports. Both issues could’ve been easily avoided had Group 2 been more vigilant about

submission guidelines.

Group 2 will need to find a way to not only have the MS Project file to reference for

future and current tasks, but also assign non-project work to members. A likely solution is to

discuss the non-project workweek during weekly meetings and then assign blocks of work to

each member through Teams, which will allow Group 2 to reference a separate document for

weekly submissions that may have missed in the process of focusing on the project itself.

Furthermore, an adherence to project management and collaboration disciplines may be

beneficial to Group 2’s members going forward. Though Group 2 had a flexible, comfortable,

and efficient planning structure that worked for them, it did not fully adhere to processes and

methods such as those found in A Guide to the Project Management Body of Knowledge (8),

though many of these tactics applied simply through the nature of project management and

execution of group work structures. In other words, Group 2’s collaboration structure was

effective and efficient, and though it took inspiration and guidance from project management

guidelines, it did not fully adhere to them for the sake of flexibility within the group.

 24

Appendix

Project Files

Further documentation of each file within the project can be found at the MineTicket

GitHub Wiki: https://github.com/Variable-Quality/MineTicket/wiki (13)

https://github.com/Variable-Quality/MineTicket/wiki

 25

main.py

• Holds important data such as the Discord bot Token for use in the code.

• Includes “run_setup”, which executes the setup process for the bot.

bot_manager.py

• Holds the actual Bot class

• Contains helper functions that allow for button functionality

• Contains button code, both basic functionality of buttons as well as dynamic buttons to

ensure bot usage after a reset

json_parsing.py

• Contains JSON structures that allow for ticket creation, claiming, and closing through

database-interactive functions.

sql.py

• Allows for connection to MariaDB database

• Contains code allowing interaction with the database by using functions as SQL

commands within the MariaDB database

• Contains constructors for player objects w/ information such as ID

• Contains table-specific classes and functions used to interact with the database

• Contains several other useful SQL-related functions that allow for more streamlined

database interaction

sql_interface.py

• Creates a layer of abstraction for sql.py, lowering risk of bad/potentially damaging inputs

• Makes helpful python objects to simplify database interactions and catch potential

mistakes

• Allows for efficient staff interaction with the database while lowering security/integrity

risks

 26

• Essentially calls on sql.py code through itself

configmanager.py

• File used to import configuration file settings based on administrator editing

• Ensures a degree of customizability within the environment

• Creates a baseline configuration to be used in the event no configuration file is found

Progress Reports

Each iteration of our cohesive weekly report document is an updated version of the last. Over the

8 weeks spent on the project, there are a total of 8 documents (one document per week, both in

Word and PDF format, equaling 16 files in total). Below are definitions and intricacies for the

different sections of the Progress Report structure.

 27

• Project Status: A color representing the weekly progress made in comparison to the

week’s goals.

o Green: Goals were reached, with potential for progression past the weekly goal.

o Yellow: Goals were just barely reached, or will require some more work within

the following week to fully reach set standards.

o Red: Goals were not reached, or a major setback has occurred that will require

intensive attention to alleviate/fix.

• Report Week: Dates that signify the beginning and end of the work week.

• Progress Summary: A general summary of weekly goals.

• Meeting Summary: General summaries of meeting content. Also accounts for individual

member attendance and dates of meetings throughout the week.

• Member Activities: A loose tracking table of what each individual member has worked

on throughout the week, including short descriptions and approximate hours spent on

different tasks.

• Total Team Hours: Sum of all individual group member hours spent on project work for

the week.

Example of Weekly Report

 28

Bibliography

 29

1. Deploy MariaDB Community Server 10.6. MariaDB. (n.d.).

https://mariadb.com/docs/server/deploy/topologies/single-node/community-server-10-6/

2. MariaDB Connector/Python. MariaDB. (n.d.-b).

https://mariadb.com/docs/server/connect/programming-languages/python/

3. Introduction. discord.py. (n.d.). https://discordpy.readthedocs.io/en/stable/intro.html

4. A primer to gateway intents. discord.py. (n.d.).

https://discordpy.readthedocs.io/en/latest/intents.html

5. Cogs. discord.py. (n.d.).

https://discordpy.readthedocs.io/en/stable/ext/commands/cogs.html

6. R, T. K. (2020, January 18). What’s this weird arrow notation in python? Medium.

https://medium.com/@thomas_k_r/whats-this-weird-arrow-notation-in-python-

53d9e293113

7. GeeksforGeeks. (2023, March 24). *args and **kwargs in python. GeeksforGeeks.

https://www.geeksforgeeks.org/args-kwargs-python/

8. Project Management Institute. (2021). A Guide to the Project Management Body of

Knowledge (PMBOK® Guide) – Seventh Edition and The Standard for Project

Management (ENGLISH): Vol. Seventh edition. Project Management Institute.

9. Commands. discord.py. (n.d.).

https://discordpy.readthedocs.io/en/stable/ext/commands/commands.html

10. How to sync slash command globally discord.py. Stack Overflow. (1968, September 1).

https://stackoverflow.com/questions/74413367/how-to-sync-slash-command-globally-

discord-py

11. Buttons. Pycord Guide. (n.d.). https://guide.pycord.dev/interactions/ui-

components/buttons

12. The cursor class. MariaDB GitHub. (n.d.). https://mariadb-

corporation.github.io/mariadb-connector-python/cursor.html

13. Brown, P., & Shell, G. (2024, April 19). MineTicket Wiki. GitHub.

https://github.com/Variable-Quality/MineTicket/wiki

https://mariadb.com/docs/server/deploy/topologies/single-node/community-server-10-6/
https://mariadb.com/docs/server/connect/programming-languages/python/
https://discordpy.readthedocs.io/en/stable/intro.html
https://discordpy.readthedocs.io/en/latest/intents.html
https://discordpy.readthedocs.io/en/stable/ext/commands/cogs.html
https://medium.com/@thomas_k_r/whats-this-weird-arrow-notation-in-python-53d9e293113
https://medium.com/@thomas_k_r/whats-this-weird-arrow-notation-in-python-53d9e293113
https://www.geeksforgeeks.org/args-kwargs-python/
https://discordpy.readthedocs.io/en/stable/ext/commands/commands.html
https://stackoverflow.com/questions/74413367/how-to-sync-slash-command-globally-discord-py
https://stackoverflow.com/questions/74413367/how-to-sync-slash-command-globally-discord-py
https://guide.pycord.dev/interactions/ui-components/buttons
https://guide.pycord.dev/interactions/ui-components/buttons
https://mariadb-corporation.github.io/mariadb-connector-python/cursor.html
https://mariadb-corporation.github.io/mariadb-connector-python/cursor.html
https://github.com/Variable-Quality/MineTicket/wiki

